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4 Hydrodynamics of stratified waters

4.1 Navier-Stokes equation in a rotating reference frame

The following equations are derived from the basic principles of conservation of mass, momentum,
and energy. Sometimes it is necessary to consider a finite arbitrary volume, called a control volume,
over which these principles can be applied. The control volume can remain fixed in space (Eulerian
view) or can move with the fluid (Lagrangian view).

a) Material and substantive (or total) derivative
Changes of the currents of a moving environmental fluid can be measured in two different ways:

(i) We can measure its changes with the help of an anemometer, such as by a weather
station (atmosphere) or by a moored current meter (water).

(i) The alternative is the measurement on a floating platform such as a weather balloon
(atmosphere) or drifting / floating buoy (water).

The difference between these two observations is obvious: The current meter in (i) is measuring
the velocity of all the moving particles passing by a fixed point in space, whereas in (ii) the
instrument is measuring changes in velocity as it moves with the fluid. The same situation
arises in measuring changes in density, temperature, salinity, etc. Therefore, when formulating
the changes (dC/dt), we have to separate out these two different views. The derivative (d ../dt) of
a field with respect to fixed positions in space is called the spatial or Eulerian derivative. The
derivative following a moving particle is called the substantive, Lagrangian or material
derivative.

The substantive derivative is the total derivative in time and defined as the operator:
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where u is the velocity (3-dimensional) vector of the flow. The first term on the right-hand side of
the equation is the ordinary Eulerian derivative (i.e. the derivative in a fixed reference frame),
whereas the second term represents the changes brought about by the moving fluid. This effect

is referred to as advection. Mathematically: (ﬁ . V) is the vector product between the velocity u
and the Nabla-operator V=(0/0x, 0/0y, 0/0z).

b) Conservation of mass - Continuity Equation

The conservation of mass is expressed by

op 0 . op . -
A. —+X—(pu;)=0 —- =0.
(4.1.2) Py +j a, (pu;) or in vector form o + div (pu)=0
Equivalent is (by applying the calculus rules for derivatives of products):
ou.
(4.1.3) @+Zuj o pEZ—L =0 or @+ﬁ~grad(p)+pdiv(ﬁ)=0
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The sum of the first two terms % + Zuj §—p corresponds exactly to the definition of the substantive
J Xj

... Dp _— 1 Dp ou ,
(or total) derivative Dt (see definition above). If ——— << —=, then the relative change of the mass

p Dt OX |
in a control volume is completely determined by the flow pattern (and not by density changes), and
we can conclude:

au]+au2+6u3: Zauj

41.4 0 or div(i) =0  or
( ) 0x, 0x, OX, v(w

This approximation is well fulfilled in natural waters, as relative density changes Ap/p can be ignored
in comparison to relative current changes (Ap/p < ~3x107 over typical depth ranges of a few meters
during stratification and for seasonal variations; Chapter Density and Stratification). This
approximation states that the Continuity Equation can be interpreted as div(u) = 0 for waters.

Tip: Familiarize yourself with such situations, by making drawings where the flow field
fulfils div(t) = 0. Explain the flow structure in upwelling (equatorial regions of the ocean; coastal
regions of lakes) and downwelling zones (mid-latitude central basins in the oceans and lakes).

¢c) Momentum equation - Navier-Stokes equation (Newton’s second Law)

The N-S equation in vector form in a rotating reference frame is

(4.1.5) p(%?+2ﬁxﬁj =pg—grad(p)+pu Vi

where Vi =div - grad (ii) is the Laplacian of the velocity vector and describes the diffusion of

momentum produced by the viscous force (friction; p); Q describes the earth rotation (rotation
vector upward; positive = anticlockwise), ¢ is the gravity vector (9.81 m s), p stands for pressure

and p denotes the dynamic viscosity (u = p'v, with v the kinematic viscosity).

The total derivative % can be replaced by the partial differentiation as:

Du ou

4.1.6 —=—+(u-grad)u.
(4.1.6) o0 =5 +(-grad)
Using the above relation, the N-S equation can be expressed in six terms:
2
(4.1.7) CLIS LI (o190 ) B S U i
o T ox p OX, j OX;

(1) (1) (i) vy V) (V1)

I:  local acceleration (storage of momentum; inertia)

Il: change of currents due to local advection (inertial term)

lll: Coriolis acceleration

IV: gravity, only in the vertical direction (only component 3 in the equation);
convention for &-notation: 613 = 823 = 0, 833 = 1.

V: acceleration due to pressure-gradient forces

VI: acceleration due to viscous stress (friction, u / p = v = kinematic viscosity [m? s])
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We can ignore the effect of the Coriolis force (2 Qxu=0 ) for turbulence and small-scale
processes. On the contrary, Coriolis forces cannot be ignored for large-scale flows.

The vector cross product can be evaluated as the determinant of a matrix:

i j ok Qv.-Qyv,
Qxv=Q  Q Q| =Qv -Quv_ |,
v, oV, v, vay — vaA

where the vectors i, j, k are unit vectors in the x, y and z directions. Remember that in index notation
the vector cross product is

3
axb:=c¢, ¢ = Zgijkajbk
Jk=1
where the Levi-Civita symbol in three dimensions has been used:

+1 if (4, j,k) is (1,2,3),(3,1,2), 0r (2,3,1),
gy =11 1 (G, j,k) is (1,3,2),(3,2,1), or (2,1,3),
0 ifi=jorj=kork=1

which is 1 if (i, j, k) is an even permutation of (1,2,3), -1 if it is an odd permutation, and 0 if any index
is repeated.

Finally, note that the continuity equation for an incompressible flow allows rewriting the advective
term in a different form:

it oxyjox Ljox o,
which will be more practical for highlighting the turbulent fluxes.

(4.1.8) Zuj%:Zi(uiuj)—u.Z%:Zi(u.u.)

4.2 Reynolds-averaged Navier-Stokes equations (RANS)
a) Reynolds decomposition

The major problem of the application of the Navier-Stokes equation to natural systems is that we
cannot possibly measure or calculate all the fluid motions down to the smallest scales. This means
that we need some method for simplification. The method of choice is usually to explicitly calculate
the average flow field and treat the small scales in a statistical way. The idea is similar to what is
generally done to describe molecular diffusivities. Instead of describing the movement of all single
molecules, which is simply impossible, the average effect of the ensemble of all movements is
described with one single diffusivity coefficient.

As an example, the velocity of a current can be expressed by an average and short-term
fluctuations due to turbulence:

(4.2.1) Ui(t) = uj(t) + uj'(t) (ui = Uj, see definition of averages below)
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Note that in this section the instantaneous velocity is indicated with the capital letter U;, while u; is
the Reynolds-averaged variable.

This procedure of separating the average and the fluctuating part of a quantity is called Reynolds
decomposition. The Reynolds decomposition is in general not a well-defined procedure. It
becomes obvious from Figure 4.1 that the average flow u = u(t) is a function of time t in general. To
find the right time scale t for forming averages is not at all trivial and to some extent also arbitrary
(see example in the exercise on Eddy Correlation).

A classic example is shown in Figure 4.2, where the synoptic component (maximum in spectrum at
4 days) is very well separated from the turbulent fluctuations u’ (maximum at about 2 minutes) by a
so-called Energy Gap (close to ~1 hour) in the Energy Spectrum. In this case it appears natural to
use a time scale of one hour to calculate the average wind field and define the faster changes as
fluctuations. Unfortunately, there is not always such a natural separation between the averages and
the fluctuations; especially this gap is often missing in natural waters.

Detailed view of wind

speed record

showing u' as the gust or
deviation of the actual
instantaneous wind, u, from
the local mean, u.

Figure 4.1 — Schematic wind record with the temporal mean u and the wind gust fluctuations u’. See also
Figure 4.2 for a more detailed explanation concerning the separation of the averages and the fluctuations.
From Stull (1988).
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Schematic spectrum of wind speed near the ground estimated
from a study of Van der Hoven (1957).

Figure 4.2 — Spectrum of a wind record close to ground. This is a classical (almost idealized) example,
where u (the synoptic scale, left peak) is well separated from u’, the turbulent fluctuations (right peak).
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There are three options to form averages:

1
Temporal average u= —J.U dt
T

. 1 .
Spatial average u= EIU ds (volume average, areal average, line average; etc.)

1N
Ensemble average u= N ZUZ. (N = number of realizations of identical experiments).
i=1

For homogeneous and stationary turbulence (in the statistical sense no temporal changes),
turbulence fulfils the so called ergodic conditions. It says that under those conditions all three
averages are identical. The assumption that the temporal statistics is equal to the spatial statistics is
often made (Taylor Hypothesis).

b) Navier-Stokes equation with turbulence

Inserting the Reynolds decomposition of the short-term fluctuations into the N-S equation and
exploiting eq (4.1.8) leads to:

0 0 1 0 0’
422) —(u,+u")+Z— |, +u.")u,+u')|=-0,,g-——(+p') +HVE—7(, +u,
( )at(l 1) JaXJI:(l 1)(_] J)] 13g p@Xl(p p) JaX?(l 1)
Note that in this section we follow the notation of eq (4.2.1): the instantaneous velocity is Ui, while u;
is the Reynolds-averaged variable and uj' is the fluctuation.

By applying the averaging rules to the equation above, the N-S equation can be simplified as
follows:

au; o _ s 1op ’u 5 0 (s
+ ) u. =—0,¢g ani+ij:aX? Zj:axj(uiuj)

(4.2.3) ot 4 J.
O] (m  (v) (V) (V1)

l: local acceleration (storage of average momentum; inertia)
Il advection of the average momentum by the average flow field

l: gravity

V: acceleration due to the average pressure-gradient forces

V: friction due to the viscous stress of the average flow field

VI: Reynolds stress (covariance of fluctuating velocity components).

The difference of this temporally averaged N-S equation to the original form above (without
fluctuations; N-S equation in laminar form) is only the term VI: Reynolds stress. This additional
stress is an effect of the non-linear interaction of the velocity components. Therefore, we call it in the
following also the non-linear term of the N-S Equation. In practice this means that for the
description of the average flow field the turbulent transport and the turbulent interactions have to
be taken into account. The new term - the Reynolds stress - acts as an additional friction (due to
turbulence).

However, in order to deal with this equation, the Reynolds stress term (originated from the non-
linearity of the advection term) has to be expressed in terms of averaged variables. The most
common closure relationship adopts a Fickian closure (see Eddy Formulation in Chapter 3):

4.2.4 . o=——pu'u'=pver| i T
( ) i pu;'u; p,,(axj ax}

1
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turb

where v, is called eddy viscosity. This implies that the Reynolds stresses can be interpreted as

the turbulent diffusion of momentum:

2_}_211 au —1=_9 _l ap azu' 0 Vturb ou,
(4.2.5) o e, O i

() an am av)y v (V1)

turb

If an additional assumption that v*” is homogeneous (i.e. it does not change in space), which is

however not true in general, then the Reynolds-average equation becomes formally identical to the
Navier-Stokes equation:

1 a turb
(4.2.6) —+ZuJax —-3, -Ea— +(v+ )Z

J i J

c) Turbulent kinetic energy - equation for turbulent fluctuations

Let us start again with the original N-S equation for velocity Uj = uj + uj', by considering average
velocities u; and fluctuations uj', the N-S equation for direction i reads:

ou, +au +Xu .6i+2 .8L+Z ai +Xu &l
ot ot J@x T ox. T ox. ax

j J

(4.2.7)

' 2 2.1
—E‘)Bg-l % 1 +vau;+vauzi
pox, poOX, OX | OX

From this total momentum equation, we subtract the time-averaged N-S equation of the average
flow field (see above). What remains (after subtraction) is the conservation equation for the turbulent
fluctuations uj':

(4.2.8) L .6“—+zu R CL T N Sy O W)
ot ok, M Tk, T Tpox, o ox j

] ] ]

This equation is the starting point for the derivation of the turbulent kinetic energy (TKE,
2 52) equation. The TKE equation is a fundamental tool linking large scale flow fields and currents
u with small-scale turbulence u’ and mixing (see below). The TKE is defined as:

(4.2.9) TKE = 0.5 (u')* .

From a mathematical perspective, TKE is equal to half of the variance (u‘)2 . The spectrum of

0.5 (u‘)2 is therefore called the energy spectrum (an example is given in Figure 4.2). As the TKE is

an important link between the large-scale flow (with kinetic energy KE, m? s2) and the turbulent
mixing (where TKE is relevant), the interpretation of the energy spectrum is important for the
understanding of the turbulence dynamics. This is an entire field of science per se.
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4.3 Navier-Stokes equation for geophysical flows

Geophysical flows are characterized by the effect of Earth rotation, which - in a rotating reference
system - is expressed by the Coriolis acceleration. The N-S equations in a rotating system can
be written in index notation as:

Du;, 1 & (=~ _ )
L= — X 200 %i). =00 +VW<u,
(4'3'1) Dt p axi ( )l l3g 1

With Q = (0, o cos(0), » sin(6))
0: latitude (equator 0°, poles £ 90°)
o: angular frequency of Earth rotation = 0.73:10* s™' (= 2/ day)

Here the viscous term is written in an approximated way for a homogeneous (no change in
space) and isotropic (no change with direction) viscosity, because in general it should be

vWu, <> Zi vy oy
7 ox; |\ ox;

In the following, we will keep the short notation and move to the more complete formulation only
when needed. Separating the three components of N-S equations:

(4.3.2) Du_ 1% _ 20(wcos @ —vsin0)+ vVu
Dt p Ox
D 1 :

(4.3.3) g ——8—p—20)u sin®+ vV?vy
Dt p Oy

(4.3.4) ﬂ:—la—p—g-i—2oaucos6+\/Vzw
Dt p Oz

In the above equations, the meaning of D.../Dt is that of the total derivative (eq 4.1.1 above):

D 0 0 0 0
4.3.5 —=—+U—+V—+w—
( ) Dt ot Ox oy W(’ﬁz

The so-called Euler equations are the N-S equation above for an ideal fluid with no viscosity
(v =0). Such an approximation can be made far away from boundaries.

In many geophysical flows the vertical scale is much smaller than the horizontal scales, so the
fluid can be thought of as a thin layer on a rotating Earth. In this case the continuity equation
implies that

W~£U
L

where W is the scale of vertical velocity, U is the scale of the horizontal velocity, H is a charac-
teristic depth and L is the horizontal length scale. If H/L is small, W/U is small as well and we can
introduce some simplifications:
e the “vertical” N-S equation can be approximated in the form of a hydrostatic pressure
distribution:

(4.3.6) 0=-1P_,

p Oz
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e we can neglect the effect of the vertical velocity in the Coriolis acceleration and introduce
the Coriolis parameter
(4.3.7) f =2msin0

o the eddy viscosity is not isotropic, meaning that the vertical coefficient (v, =v_)is
typically different (usually significantly smaller) than the coefficient (v,, = v,, = v, ) in the
horizontal directions.

As a consequence, the governing equations can be simplified as

Du 1 op ) o’u
4.3.8 —=———+ fVv+Vv,Viu+v, —-
( ) Dt p ax ﬁ} h'h z 622
2
(4.3.9) &=—18—p—fu+vhv,ﬁv+vza—f
Dt p Oy oz
2 2
with V; = 8—2 + 8—2
oy
The vertical distribution of pressure
) :
(4.3.10) —=pg > p=p-| plQ)gdc

These three equations above (eqs 4.3.8 — 4.3.10) represent the starting point of most models for
the description of flows and circulation in oceans and lakes.

Geophysical large-scale flows

a) Water at rest

If water is at rest, no motions, u =v =w =0 and the equations are simply

(4.4.1) a—pzo, a—p:O, a—p:—pg
ox oy 0z

This implies that lines of equal pressure (isobars) must be horizontal in the motionless waters.
This means that p may only be a function of depth z, which also includes the condition of a flat
(horizontal) surface.

b) Coriolis force - Inertial circulation

The Coriolis force per unit mass fc depends on the cross-product of the earth’s angular velocity,

Q, which is parallel to its spin axis, and the fluid velocity, u, as follows:
(4.4.2) f =-2Qxi [N kg' = ms?]

The Coriolis force is a pseudo force introduced so that we may consider the rotating earth as an
inertial system in which Newton's equation holds. Thus the surface velocity, which is primarily due

to the wind stress, T, provokes an additional force that is perpendicular to both Q and 4. The
horizontal component of f'c (active in diverting horizontal flows) varies latitudinal from zero at the
equator to a maximum at the poles. At all latitudes, however, this component acts perpendicular



Limnology ENV-425 Natacha Tofield-Pasche
Hydrodynamics of stratified waters 55 Alfred Wiest

to the current (Northern Hemisphere: to the right of the flow (fluid to orbit in clockwise circles);
Southern Hemisphere: to the left). These circular inertial circulations have a period of the order
of one day at mid-latitudes; however, the local inertial periods range from 12 hours (f = 2 o sin
(90°); T = 2n/(2w) = 2n/(4n/day) = 0.5 day) at the poles, to 1 day at 30 ° latitude to infinity at the
equator (f = 0). These motions are often observed in large lakes following impulsive wind events.
See examples in class.

If we consider a flow characterized by an initial value of velocity U but far from boundaries, we
are allowed to introduce a number of assumptions that make the model much simpler: negligible

pressure gradients (0p/0x = dp/dy = 0), almost frictionless (v, = v_ =0), spatially
homogeneous (du/ox = du/dy = dv/dx = dv/dy = 0). Thus we obtain

ou
(4.4.3) 5 = fV

ov
(4.4.4) 5 = —fu

which has the simple solution
(4.4.5) u=U cos(ft), v =-Usin(ft)

The flow describes a circle rotating clockwise in the northern hemisphere with period
T =2m/ f (inertial period) and radius R =U/f (inertial radius). The rotation is counter-
clockwise on the southern hemisphere.

Another radius is also used to define the length scale at which rotational effects become as
important as buoyancy or gravity wave effects, the Rossby radius of deformation

(4.4.6) L, =

where H is the depth (or layer thickness) and

, A
(4.4.7) g'= ?p g

is the acceleration due to reduced gravity in baroclinic flows. Note that the numerator of L is
celerity of gravity waves (phase speed) across interfaces between layers with different density.

We can examine whether neglecting friction terms is consistent with this result. Typical values
for the eddy viscosity in large natural waters are: va= 10 - 10° m? s, v, = 10 - 10" m? s'. Firstly
we consider horizontal viscosity: since V2u ~ V2v~U/R?, we can consider the order of

magnitude of the friction term as v,Viu ~ v, fz/U. In order to neglect friction, this has to be
smaller (in absolute value) than the Coriolis term ~ fU , i.e. v, << Uz/f. WithU~0.1ms", f~

10%s'> Uz/f~ 102 m?s™, so the condition is not always fulfilled. This means that the frictional
damping of inertial currents may be significant.

The case of vertical viscosity is more difficult to estimate because the vertical gradient of velocity
can be large in the surface mixed layer and depend on the history of the system (since in general,

the motions are driven by wind events). The comparison is now between v_d%u/éz* ~v_U/H”
and the Coriolis term, fU , hence v_ << H’ f . For a vertical scale H ~ 10? m (oceans, deep
lakes) this means v, << 10° m? s, a condition that is usually fulfilled; on the contrary for H~ 10 m
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(lakes) it turns out that v, << 102 m? s™!, which is not always fulfilled in the weakly stratified
surface layer.

We can also consider the order of magnitude of nonlinear terms: u du/dx ~U?/R = fU , which is

exactly the same order as the Coriolis term, so the only possibility to neglect them is the
assumption of homogeneous flow fields.

In summary: inertial currents feel friction. Their structure (R = U/ f ~ 10%® m) is usually too small

to belong to the really large-scale patterns of quasi-frictionless flow. We will return to the effect of
friction when dealing with Ekman transport.

c) Wind - the driver of large-scale currents

The wind exerts a shear stress on the water surface, which can be calculated by the empirical
relationship:

(4.4.8) T = pa CioWie? [N m?]

where W is the wind velocity; p, the density of air; and C4o the dimensionless aerodynamic drag
coefficient (C1o stands for wind W10 measured 10 m above water). The response of oceans/lakes
to the wind stress eq (4.4.8) is not at all in accord with intuition. The intuitive response-motion
along the direction of the forcing is significantly altered by Coriolis force, stratification of the
water body, and the redirection of flow due to its continental boundaries.
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Figure 4.3 — Global wind patterns. Figure from Open University (1989).

The above described inertial currents, which are driven by the wind (Figure 4.3), are affected by
friction. The frictional damping reduces the amplitude of the inertial oscillations and allows the
parcel of fluid to take up a component of motion along the direction of the stress, so that the net,
long-term surface flow is to the right of the wind stress (Northern Hemisphere) at some angle,
typically 10° to 45°. Such flow is termed Ekman wind drift. The near-surface Ekman flow in turn
exerts a frictional stress on the layer of fluid immediately below, which also responds by moving
to the right of the surface flow, but at a somewhat reduced velocity because of friction. This
veering effect continues to migrate downward, so that local velocity vector of the oceanic current
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rotates continuously to the right with depth, while decaying exponentially with a scale of order 10
to 20 m (Figure 4.4).

This volume flow per unit horizontal distance is termed Ekman transport (units m? s*'). On the
equatorward flanks of the easterly trade winds, the right-angle forcing moves surface water
poleward from the equatorial region and results in cold, subsurface water flowing upward to
replace the missing surface water, a process called equatorial upwelling (Figure 4.5).

Ekman transport contributes to the first step in the formation of the major subtropical and
subpolar oceanic gyres as well as the equatorial current systems. In a typical ocean basin
(Figure 4.6a) both the easterly trade winds and the mid-latitude westerlies force surface water
toward the gyre interior because of Ekman transport (Figure 4.6b). The surface convergence
causes an accumulation of warmer, lighter water, and results in a small elevation (order ~1 m or
less) of the surface above the equipotential. It also causes a much larger deepening of the
thermocline, which is found down to depths of several hundred meters. Thus, Ekman inflow into
the subtropical convergence (interior of the gyre) results in a downwelling of the surface waters
(Figure 4.6b). The mathematical derivation of the Ekman phenomenon and the Ekman transport
are detailed in the following Chapter 4.5.

|Surface current

Depth

100 m

Ekman spiral

Figure 4.4 — Rotation and attenuation of the near-surface velocity vector with depth through the surface
Ekman layer of a water body. Wind direction is indicated by topmost vane. If the wind drift current is
integrated over depths, the net transport of water is at 90° to the direction of the wind stress (to right on the
Northern Hemisphere; to left in Southern Hemisphere) (Figure: San Francisco State University).

'N— (b
(@ Ekman transport >N (k)
surface wind STN equlat‘:'l' 517:8

cold Warm

equator - WErm

surface wind
Ekman transport
595 —
Figure 4.5 — Ekman sucking along the equator. (a) Plan view of the prevailing surface wind and resulting
water transport away from the equator in the Ekman layers of the oceans. Therefore, the equator is a

divergence zone. (b) Corresponding cross section, showing the upwelling and resulting SST anomalies
which is a consequence of the equatorial divergence [University of Wyoming].

thermocline
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Westerlies

Figure 4.6 — (left) Convergence of surface water toward the interior of the North Atlantic Gyre under the
influence of Ekman transport. Both trade winds (at equator) and westerlies (mid-northern latitude)
contribute to the accumulation of the warm water pool in the center of the North Atlantic Gyre, creating a
convergence zone which leads to downwelling. Figure from Apel [1987].

(right) Wind-driven general circulation, including subduction as well as upwelling [University of California,
San Diego].

d) Global geostrophic flows in oceans

The small surface elevation indicated in Figure 4.6b is termed setup, and has associated with it a
hydraulic head and a horizontal pressure gradient, —V, p, that is opposed by the horizontal com-

ponent of Coriolis force, p(2f2 X ﬁ)h . The currents resulting from this balance of forces are called

geostrophic flows (earth-turning), and in the absence of time variations and friction, move
approximately along surfaces of constant elevation. Thus the geostrophic equation is:

(4.4.9) v,p=—pl20xii), (N m?]

where h denotes the horizontal component. Geostrophic balance is not confined to surface
currents, but may exist at all depths. This equation for balanced flow forms an important tool in
the analysis of currents in large natural waters. The two horizontal components for the geo-
strophic currents for steady flows (index g refers to geostrophic) read:

(4.4.10) fv=ia—p or % :Lﬁ_p
p Ox ¢ pf ox
(4.4.11) fu:—la—p or u, :—La—p
p oy pf oy
(4.4.12) or in summary: u, = L(éz xVhp)
o

Geostrophic currents are steady flows in which the horizontal pressure gradients balance Coriolis
acceleration over long lateral distances (100s to 1000s of km). The vertical pressure gradient is in
balance with gravity. The flows are perpendicular to the horizontal pressure gradient and parallel
to the isobars (lines of constant pressure). Thus, in the northern Hemisphere the high pressure
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region is on the right of the flow. This means that nonlinear acceleration and turbulent friction
are neglected in comparison to Coriolis force. In particular, if U is the scale for velocity and L for
length (i.e., distance over which horizontal gradients of the variable occur), we can compare
advective acceleration ~ U* / L and Coriolis acceleration ~ fU . The ratio is known as Rossby
number:

(4 4 13) Ro = nonlinear acc. _i
o Coriolis acc.  fL

The geostrophic approximation is valid for small values of the Rossby number, a condition that is
more common in oceans than in lakes. It is actually a standard approximation in atmospheric
studies at the synoptic scale (U~10m s, f~10*s”, L ~1000 km = Ro ~ 1).

Note: While the horizontal pressure gradients are balanced by Coriolis force, the vertical pressure
gradient is compensated by the gravitational acceleration in the hydrostatic approximation.

Figure 4.7

Surface streamlines of an idealized
subtropical gyre. Intensification of
flow along the western boundary is
due to the overall vorticity balance
of the gyre. Figure from Apel [1987].

Applied to Figure 4.6, this relation implies that at the equator the flow is to the west (from Africa to
South America; North Equatorial Current), whereas the return flow at mid-latitudes (region of
westerlies) is directed to the east (North America to Europe; North Atlantic Drift; Figure 4.7).
The compensating south-north flows are concentrated to the boundary currents — stronger on the
western side (Eastern USA; China) for secondary hydrodynamic reasons (not discussed here)
and weaker on the eastern side. The south-to-north flow is the Florida Current / Gulfstream on
the western side of the basin (Kuroshio Current in the Pacific). The north-to-south flow is the
Canary Current on the eastern side of the basin (Portugal, Africa) which reaches as far as
Senegal before it turns west and joins the North Equatorial Current (Figure 4.7). The center of the
North Atlantic Gyre is an area of high pressure (anticyclones) and the gyre turns clockwise.
Opposite: cyclones (low pressure area) rotate anticlockwise. Southern Hemisphere: since f< 0,
the flow direction is reversed (greater pressure to the left).

The geostrophic flows are perpendicular to the horizontal pressure gradient V, p and parallel to

the isobars (lines of constant pressure). Thus, in the northern hemisphere the high pressure
region is on the right of the flow. This also means that cyclones (area of low pressure) rotate
anticlockwise and anticyclones (areas of high pressure) rotate clockwise. Vice versa, since f<0
in the southern hemisphere, the flow direction is reversed (greater pressure to the left).

Formally, the geostrophic flow can also be represented by the vector product
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1
(4.4.14) i, =—(.xV,p
g pf( h )

Where & = (0,0,1) is the unit vector in the z-direction.

2
(4.5.5) W1, gy, 20U
o pox oz°

2
(4.5.6) V1P 4, 20
ot p Oy oz?

For steady-state conditions (oU /ot =0V /ot =0), they become even simpler:

1 op U
4.5.7 S
(4.5.7) 0 pax+fV+vZaZ2
1 op o
4.5.8 0=——2 _ v
( ) oy fU+v, e

and we obtain the so-called Ekman flow. To solve this system of equations we need two
boundary conditions (e.g. at the surface z = 0 and at the bottom z = -h) for each of the two
velocity components.

Two dimensionless parameters can be introduced to describe the ratio between the friction term
and the Coriolis term (definitions with factor of 2 are also used; not relevant):

horizontal  friction v,
- o2

(4.5.9) E, horizontal Ekman number

Coriolis acc
vertical friction Vv,
Coriolis acc fH 2

(4.5.10) vertical Ekman number.

b) Ekman transport at the surface without pressure gradients

In this section, we chose as symbols for horizontal currents (U, V), simply in order not to confuse
with the symbol v, which stand for viscosity (in the equation editor minor v reads as v which is
very similar to v ). For sake of clarity, we first analyse the simplest case, introducing some
assumptions: the depth is very large so we can assume that the bottom boundary condition is at z
= -»; neglect the pressure gradients (that are related to geostrophic flow).

IJ“ /
i

—— T

45°

&la

r 5x
B -2 =0 —4— \

e
“%ﬂg dq:ffl -z/8

(a) Hodograph (b) Profiles of i and v
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Figure 4.17 — Ekman layer at a free surface: (a) the velocity vector at different heights (6 in the figure is
De); (b) the velocity profiles [Kundu and Cohen, 2002].

The governing equations are

’u_ f
(4.5.11) P _VZV

oV B f
(4.5.12) =

with the boundary conditions (for a wind directed northward):

oUu T

— — , U
Oz =0 PV:

By differentiation the first equation twice in respect to z and substituting into the second one, a
fourth-order ordinary differential equation is obtained:

o,
z=0 oz

(4.5.13) =0

Z=—00

=0, 14

Z=—00

ou (1Y
4.5.14 — = |U
( ) ozt (Vz ]
An identical equation can be derived for V. Using the boundary conditions, the solution is
(4.5.15) U=V, exp(DiEJ cos(% + LEJ
(4.5.16) V=Y, exp[DiE] sin[% + DLEJ where
(4.5.17) V,=—"
pyV.f
is the scale of velocity, and
2
(4.5.18) D, = |
f

is the depth of the so-called Ekman layer.

The flow field described by the solution is a spiral for the velocity vector, which changes direction
while the velocity is decreasing in downward direction. In fact, the winds at the surface move the
water on the surface. This movement is transferred to the underlying layers through turbulent
(eddy) viscosity (friction). However, the Coriolis force tends to deviate the water movement (to the
right on the northern hemisphere) causing a direction of the velocity at the surface that differs 45°
from the wind direction. Apparently unexpected, the net water transport integrated over the entire
depth is orthogonal to the wind. We can see these features analytically observing that the velocity
at the surface is

(4.5.19) U=V, cos(%) = gVO , V=V, sin(%} = QVO

2
so that the module of the velocity is exactly ‘U‘ =NU?+V? =V,.

The total transport (per unit length, with the units [m? s™']) produced by such a flow can be
calculated as
0 VoD T
(4.5.20) g, =| Udz=""E-_—
LO V2o o

0
(4.5.21) g, :j Vd=0
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confirming that, on average, no transport occurs along the direction of the wind, and that a net
transport exists at 90° (rightward in the northern hemisphere, leftward in the southern).

£C-m'uLl5 —rwind
+ >

1
Figure 4.18 — Balance of forces within the Ekman layer.

It is also possible to rewrite the governing equations as

0 oU
(4.5.22) 872 =—pfV L=V,
0
(4.5.23) ar —pfU 0 =pr.
z Oz

These equations, integrated from the top (where 7 is equal to the wind stress) to infinity (where

T goes to zero), provides directly the solution eqs (4.5.19 and 4.5.20). This result is more
general than the Ekman spiral and suggests that the balance of the forces within the Ekman layer
is between the wind shear stress and the Coriolis force (Figure 4.18).
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