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4 Hydrodynamics of stratified waters 
  

4.1 Navier-Stokes equation in a rotating reference frame 
  
The following equations are derived from the basic principles of conservation of mass, momentum, 
and energy. Sometimes it is necessary to consider a finite arbitrary volume, called a control volume, 
over which these principles can be applied. The control volume can remain fixed in space (Eulerian 
view) or can move with the fluid (Lagrangian view). 
 
 
a) Material and substantive (or total) derivative  

Changes of the currents of a moving environmental fluid can be measured in two different ways: 

(i) We can measure its changes with the help of an anemometer, such as by a weather 
station (atmosphere) or by a moored current meter (water).  

(ii) The alternative is the measurement on a floating platform such as a weather balloon 
(atmosphere) or drifting / floating buoy (water).  

The difference between these two observations is obvious: The current meter in (i) is measuring 
the velocity of all the moving particles passing by a fixed point in space, whereas in (ii) the 
instrument is measuring changes in velocity as it moves with the fluid. The same situation 
arises in measuring changes in density, temperature, salinity, etc. Therefore, when formulating 
the changes (dC/dt), we have to separate out these two different views. The derivative (d ../dt) of 
a field with respect to fixed positions in space is called the spatial or Eulerian derivative. The 
derivative following a moving particle is called the substantive, Lagrangian or material 
derivative. 

The substantive derivative is the total derivative in time and defined as the operator: 
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where u  is the velocity (3-dimensional) vector of the flow. The first term on the right-hand side of 
the equation is the ordinary Eulerian derivative (i.e. the derivative in a fixed reference frame), 
whereas the second term represents the changes brought about by the moving fluid. This effect 
is referred to as advection. Mathematically: ( )∇⋅u  is the vector product between the velocity u  
and the Nabla-operator )/,/,/( zyx ∂∂∂∂∂∂=∇ . 

 
b) Conservation of mass - Continuity Equation 
 
The conservation of mass is expressed by 
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Equivalent is (by applying the calculus rules for derivatives of products): 
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http://en.wikipedia.org/wiki/Anemometer
http://en.wikipedia.org/wiki/Earth%27s_atmosphere
http://en.wikipedia.org/wiki/Earth%27s_atmosphere
http://en.wikipedia.org/wiki/Advection
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in a control volume is completely determined by the flow pattern (and not by density changes), and 
we can conclude: 
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This approximation is well fulfilled in natural waters, as relative density changes Δρ/ρ can be ignored 
in comparison to relative current changes (Δρ/ρ < ~3x10-3 over typical depth ranges of a few meters 
during stratification and for seasonal variations; Chapter Density and Stratification). This 
approximation states that the Continuity Equation can be interpreted as div(u) = 0 for waters. 
 
Tip: Familiarize yourself with such situations, by making drawings where the flow field 
fulfils 0 )u(div =


. Explain the flow structure in upwelling (equatorial regions of the ocean; coastal 

regions of lakes) and downwelling zones (mid-latitude central basins in the oceans and lakes). 
 
 
c) Momentum equation - Navier-Stokes equation (Newton’s second Law) 
 
The N-S equation in vector form in a rotating reference frame is  
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where ( )u grad  div  u2 
⋅=∇  is the Laplacian of the velocity vector and describes the diffusion of 

momentum produced by the viscous force (friction; µ); Ω


 describes the earth rotation (rotation 
vector upward; positive = anticlockwise), g  is the gravity vector (9.81 m s-2), p stands for pressure 
and µ denotes the dynamic viscosity (µ = ρ.ν, with ν the kinematic viscosity).  

 

The total derivative 
Dt

uD  can be replaced by the partial differentiation as: 
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Using the above relation, the N-S equation can be expressed in six terms: 
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 (I) (II) (III) (IV) (V) (VI) 
 
 I: local acceleration (storage of momentum; inertia) 
 II: change of currents due to local advection (inertial term) 
 III: Coriolis acceleration 
 IV: gravity, only in the vertical direction (only component 3 in the equation);  
  convention for δ-notation: δ13 = δ23 = 0, δ33 = 1. 
 V: acceleration due to pressure-gradient forces  
 VI: acceleration due to viscous stress (friction, µ / ρ = ν = kinematic viscosity [m2 s-1]) 
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We can ignore the effect of the Coriolis force ( 0 u 2 =×Ω


) for turbulence and small-scale 

processes. On the contrary, Coriolis forces cannot be ignored for large-scale flows.  
 
The vector cross product can be evaluated as the determinant of a matrix: 
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where the vectors i, j, k are unit vectors in the x, y and z directions. Remember that in index notation 
the vector cross product is 

∑
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where the Levi-Civita symbol in three dimensions has been used: 
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which is 1 if (i, j, k) is an even permutation of (1,2,3), −1 if it is an odd permutation, and 0 if any index 
is repeated.  
 
Finally, note that the continuity equation for an incompressible flow allows rewriting the advective 
term in a different form: 
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which will be more practical for highlighting the turbulent fluxes. 
 
 

4.2 Reynolds-averaged Navier-Stokes equations (RANS) 
 
a) Reynolds decomposition 
  
The major problem of the application of the Navier-Stokes equation to natural systems is that we 
cannot possibly measure or calculate all the fluid motions down to the smallest scales. This means 
that we need some method for simplification. The method of choice is usually to explicitly calculate 
the average flow field and treat the small scales in a statistical way. The idea is similar to what is 
generally done to describe molecular diffusivities. Instead of describing the movement of all single 
molecules, which is simply impossible, the average effect of the ensemble of all movements is 
described with one single diffusivity coefficient. 
 
As an example, the velocity of a current can be expressed by an average and short-term 
fluctuations due to turbulence: 

 (4.2.1)   Ui(t) = ui(t) + ui'(t)  (ui = 
_
Ui, see definition of averages below)  
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Note that in this section the instantaneous velocity is indicated with the capital letter Ui, while ui is 
the Reynolds-averaged variable. 
 
This procedure of separating the average and the fluctuating part of a quantity is called Reynolds 
decomposition. The Reynolds decomposition is in general not a well-defined procedure. It 
becomes obvious from Figure 4.1 that the average flow u = u(t) is a function of time t in general. To 
find the right time scale τ for forming averages is not at all trivial and to some extent also arbitrary 
(see example in the exercise on Eddy Correlation).  
 
A classic example is shown in Figure 4.2, where the synoptic component (maximum in spectrum at 
4 days) is very well separated from the turbulent fluctuations u’ (maximum at about 2 minutes) by a 
so-called Energy Gap (close to ~1 hour) in the Energy Spectrum. In this case it appears natural to 
use a time scale of one hour to calculate the average wind field and define the faster changes as 
fluctuations. Unfortunately, there is not always such a natural separation between the averages and 
the fluctuations; especially this gap is often missing in natural waters. 
 

  
Figure 4.1 – Schematic wind record with the temporal mean u and the wind gust fluctuations u’. See also 
Figure 4.2 for a more detailed explanation concerning the separation of the averages and the fluctuations. 
From Stull (1988). 
 

   
Figure 4.2 – Spectrum of a wind record close to ground. This is a classical (almost idealized) example, 
where u (the synoptic scale, left peak) is well separated from u’, the turbulent fluctuations (right peak). 
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There are three options to form averages:  

  Temporal average  dtUu ∫=
τ
1   

  Spatial average  dsU
S

u ∫=
1  (volume average, areal average, line average; etc.) 

  Ensemble average ∑
=

=
N

1 iN
1

iUu  (N = number of realizations of identical experiments).  

 
For homogeneous and stationary turbulence (in the statistical sense no temporal changes), 
turbulence fulfils the so called ergodic conditions. It says that under those conditions all three 
averages are identical. The assumption that the temporal statistics is equal to the spatial statistics is 
often made (Taylor Hypothesis). 
 
 
b) Navier-Stokes equation with turbulence 
 
Inserting the Reynolds decomposition of the short-term fluctuations into the N-S equation and 
exploiting eq (4.1.8) leads to:  
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Note that in this section we follow the notation of eq (4.2.1): the instantaneous velocity is Ui, while ui 
is the Reynolds-averaged variable and ui' is the fluctuation. 
 
By applying the averaging rules to the equation above, the N-S equation can be simplified as 
follows:   
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 I:  local acceleration (storage of average momentum; inertia) 
 II:  advection of the average momentum by the average flow field  
 III: gravity  
 IV: acceleration due to the average pressure-gradient forces  
 V:  friction due to the viscous stress of the average flow field  
 VI: Reynolds stress (covariance of fluctuating velocity components). 
 
The difference of this temporally averaged N-S equation to the original form above (without 
fluctuations; N-S equation in laminar form) is only the term VI: Reynolds stress. This additional 
stress is an effect of the non-linear interaction of the velocity components. Therefore, we call it in the 
following also the non-linear term of the N-S Equation. In practice this means that for the 
description of the average flow field the turbulent transport and the turbulent interactions have to 
be taken into account. The new term - the Reynolds stress - acts as an additional friction (due to 
turbulence). 
 
However, in order to deal with this equation, the Reynolds stress term (originated from the non-
linearity of the advection term) has to be expressed in terms of averaged variables. The most 
common closure relationship adopts a Fickian closure (see Eddy Formulation in Chapter 3): 
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where turb

ijν  is called eddy viscosity. This implies that the Reynolds stresses can be interpreted as 
the turbulent diffusion of momentum: 
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If an additional assumption that turbν  is homogeneous (i.e. it does not change in space), which is 
however not true in general, then the Reynolds-average equation becomes formally identical to the 
Navier-Stokes equation: 
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c) Turbulent kinetic energy - equation for turbulent fluctuations 
 
Let us start again with the original N-S equation for velocity Ui = ui + ui', by considering average 
velocities ui and fluctuations ui', the N-S equation for direction i reads:  
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From this total momentum equation, we subtract the time-averaged N-S equation of the average 
flow field (see above). What remains (after subtraction) is the conservation equation for the turbulent 
fluctuations ui': 
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This equation is the starting point for the derivation of the turbulent kinetic energy (TKE,  
m2 s-2) equation. The TKE equation is a fundamental tool linking large scale flow fields and currents 
u with small-scale turbulence u’ and mixing (see below). The TKE is defined as: 
 

(4.2.9)  TKE = 0.5. 2)(u' . 
 

From a mathematical perspective, TKE is equal to half of the variance 2)(u' . The spectrum of 

0.5. 2)(u' is therefore called the energy spectrum (an example is given in Figure 4.2). As the TKE is 
an important link between the large-scale flow (with kinetic energy KE, m2 s-2) and the turbulent 
mixing (where TKE is relevant), the interpretation of the energy spectrum is important for the 
understanding of the turbulence dynamics. This is an entire field of science per se. 
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4.3 Navier-Stokes equation for geophysical flows 
 
Geophysical flows are characterized by the effect of Earth rotation, which - in a rotating reference 
system - is expressed by the Coriolis acceleration. The N-S equations in a rotating system can 
be written in index notation as: 
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With Ω = (0, ω cos(θ), ω sin(θ))  

θ :  latitude (equator 0°, poles ± 90°)  
ω :  angular frequency of Earth rotation = 0.73∙10-4 s-1 (= 2π / day) 

 
Here the viscous term is written in an approximated way for a homogeneous (no change in 
space) and isotropic (no change with direction) viscosity, because in general it should be 
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In the following, we will keep the short notation and move to the more complete formulation only 
when needed. Separating the three components of N-S equations: 
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In the above equations, the meaning of D…/Dt is that of the total derivative (eq 4.1.1 above): 
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The so-called Euler equations are the N-S equation above for an ideal fluid with no viscosity 
( 0=ν ). Such an approximation can be made far away from boundaries. 
 
In many geophysical flows the vertical scale is much smaller than the horizontal scales, so the 
fluid can be thought of as a thin layer on a rotating Earth. In this case the continuity equation 
implies that  

   U
L
HW ~  

 
where W is the scale of vertical velocity, U is the scale of the horizontal velocity, H is a charac-
teristic depth and L is the horizontal length scale. If H/L is small, W/U is small as well and we can 
introduce some simplifications: 

• the “vertical” N-S equation can be approximated in the form of a hydrostatic pressure 
distribution: 
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• we can neglect the effect of the vertical velocity in the Coriolis acceleration and introduce 
the Coriolis parameter 

(4.3.7)   θω= sin2f  
 

• the eddy viscosity is not isotropic, meaning that the vertical coefficient ( zi ν=ν 3 ) is 
typically different (usually significantly smaller) than the coefficient ( hii ν=ν=ν 21 ) in the 
horizontal directions. 

 
As a consequence, the governing equations can be simplified as  
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The vertical distribution of pressure  
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These three equations above (eqs 4.3.8 – 4.3.10) represent the starting point of most models for 
the description of flows and circulation in oceans and lakes. 
 
 
 

Geophysical large-scale flows 
 
 
a) Water at rest 
If water is at rest, no motions, 0=== wvu  and the equations are simply 
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This implies that lines of equal pressure (isobars) must be horizontal in the motionless waters. 
This means that ρ may only be a function of depth z, which also includes the condition of a flat 
(horizontal) surface. 
 
 
b) Coriolis force - Inertial circulation 

The Coriolis force per unit mass cf


 depends on the cross-product of the earth’s angular velocity, 

Ω


, which is parallel to its spin axis, and the fluid velocity, u, as follows: 
 
(4.4.2)    u2fc


×Ω−=      [N kg-1 = m s-2] 

 
The Coriolis force is a pseudo force introduced so that we may consider the rotating earth as an 
inertial system in which Newton's equation holds. Thus the surface velocity, which is primarily due 
to the wind stress, τ


, provokes an additional force that is perpendicular to both Ω


 and u . The 

horizontal component of cf


 (active in diverting horizontal flows) varies latitudinal from zero at the 
equator to a maximum at the poles. At all latitudes, however, this component acts perpendicular 
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to the current (Northern Hemisphere: to the right of the flow (fluid to orbit in clockwise circles); 
Southern Hemisphere: to the left). These circular inertial circulations have a period of the order 
of one day at mid-latitudes; however, the local inertial periods range from 12 hours (f = 2 ω sin 
(90ο); τ = 2π/(2ω) = 2π/(4π/day) = 0.5 day) at the poles, to 1 day at 30 ο latitude to infinity at the 
equator (f = 0). These motions are often observed in large lakes following impulsive wind events. 
See examples in class. 
 
If we consider a flow characterized by an initial value of velocity U but far from boundaries, we 
are allowed to introduce a number of assumptions that make the model much simpler: negligible 
pressure gradients ( 0=∂∂=∂∂ ypxp ), almost frictionless ( 0=ν=ν zh ), spatially 
homogeneous ( 0=∂∂=∂∂=∂∂=∂∂ yvxvyuxu ). Thus we obtain 

(4.4.3)  fv
t
u

=
∂
∂  

(4.4.4)  fu
t
v

−=
∂
∂  

which has the simple solution 
 
(4.4.5)  ( )ftUu cos= ,   ( )ftUv sin−=  
 
The flow describes a circle rotating clockwise in the northern hemisphere with period 

fT π= 2 (inertial period) and radius fUR =  (inertial radius). The rotation is counter-
clockwise on the southern hemisphere. 
 
Another radius is also used to define the length scale at which rotational effects become as 
important as buoyancy or gravity wave effects, the Rossby radius of deformation 
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where H is the depth (or layer thickness) and  
 

(4.4.7)  gg
ρ
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is the acceleration due to reduced gravity in baroclinic flows. Note that the numerator of LR is 
celerity of gravity waves (phase speed) across interfaces between layers with different density. 
 
We can examine whether neglecting friction terms is consistent with this result. Typical values 
for the eddy viscosity in large natural waters are: νh ≈ 10 - 105 m2 s-1, νz ≈ 10-5 - 10-1 m2 s-1. Firstly 
we consider horizontal viscosity: since 222 ~~ RUvu hh ∇∇ , we can consider the order of 

magnitude of the friction term as Ufu hhh
22 ~ ν∇ν . In order to neglect friction, this has to be 

smaller (in absolute value) than the Coriolis term fU~ , i.e. fUh
2<<ν . With U ~ 0.1 m s-1, f ~ 

10-4 s-1  fU 2 ~ 102 m2 s-1, so the condition is not always fulfilled. This means that the frictional 
damping of inertial currents may be significant. 

 
The case of vertical viscosity is more difficult to estimate because the vertical gradient of velocity 
can be large in the surface mixed layer and depend on the history of the system (since in general, 
the motions are driven by wind events). The comparison is now between 222 ~ HUzu zz ν∂∂ν  

and the Coriolis term, fU , hence fHz
2<<ν . For a vertical scale H ~ 102 m (oceans, deep 

lakes) this means νz << 100 m2 s-1, a condition that is usually fulfilled; on the contrary for H ~ 10 m 
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(lakes) it turns out that νz << 10-2 m2 s-1, which is not always fulfilled in the weakly stratified 
surface layer. 
 
We can also consider the order of magnitude of nonlinear terms: fURUxuu =∂∂ 2~ , which is 
exactly the same order as the Coriolis term, so the only possibility to neglect them is the 
assumption of homogeneous flow fields. 
 
In summary: inertial currents feel friction. Their structure ( fUR = ~ 103 m) is usually too small 
to belong to the really large-scale patterns of quasi-frictionless flow. We will return to the effect of 
friction when dealing with Ekman transport. 
 
 
 
c) Wind - the driver of large-scale currents  
The wind exerts a shear stress on the water surface, which can be calculated by the empirical 
relationship: 
 
(4.4.8)   τ

   =  ρa C10 W10
2       [N m-2] 

 
where W10 is the wind velocity; ρa the density of air; and C10 the dimensionless aerodynamic drag 
coefficient (C10 stands for wind W10 measured 10 m above water). The response of oceans/lakes 
to the wind stress eq (4.4.8) is not at all in accord with intuition. The intuitive response-motion 
along the direction of the forcing is significantly altered by Coriolis force, stratification of the 
water body, and the redirection of flow due to its continental boundaries. 
 

 
 
Figure 4.3 – Global wind patterns. Figure from Open University (1989). 
 
The above described inertial currents, which are driven by the wind (Figure 4.3), are affected by 
friction. The frictional damping reduces the amplitude of the inertial oscillations and allows the 
parcel of fluid to take up a component of motion along the direction of the stress, so that the net, 
long-term surface flow is to the right of the wind stress (Northern Hemisphere) at some angle, 
typically 10° to 45°. Such flow is termed Ekman wind drift. The near-surface Ekman flow in turn 
exerts a frictional stress on the layer of fluid immediately below, which also responds by moving 
to the right of the surface flow, but at a somewhat reduced velocity because of friction. This 
veering effect continues to migrate downward, so that local velocity vector of the oceanic current 
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rotates continuously to the right with depth, while decaying exponentially with a scale of order 10 
to 20 m (Figure 4.4). 

 
This volume flow per unit horizontal distance is termed Ekman transport (units m2 s-1). On the 
equatorward flanks of the easterly trade winds, the right-angle forcing moves surface water 
poleward from the equatorial region and results in cold, subsurface water flowing upward to 
replace the missing surface water, a process called equatorial upwelling (Figure 4.5 ). 
 
Ekman transport contributes to the first step in the formation of the major subtropical and 
subpolar oceanic gyres as well as the equatorial current systems. In a typical ocean basin 
(Figure 4.6a) both the easterly trade winds and the mid-latitude westerlies force surface water 
toward the gyre interior because of Ekman transport (Figure 4.6b). The surface convergence 
causes an accumulation of warmer, lighter water, and results in a small elevation (order ~1 m or 
less) of the surface above the equipotential. It also causes a much larger deepening of the 
thermocline, which is found down to depths of several hundred meters. Thus, Ekman inflow into 
the subtropical convergence (interior of the gyre) results in a downwelling of the surface waters 
(Figure 4.6b). The mathematical derivation of the Ekman phenomenon and the Ekman transport 
are detailed in the following Chapter 4.5. 
 
 

 
Figure 4.4 – Rotation and attenuation of the near-surface velocity vector with depth through the surface 
Ekman layer of a water body. Wind direction is indicated by topmost vane. If the wind drift current is 
integrated over depths, the net transport of water is at 90° to the direction of the wind stress (to right on the 
Northern Hemisphere; to left in Southern Hemisphere) (Figure: San Francisco State University). 
 

  
 
Figure 4.5 – Ekman sucking along the equator. (a) Plan view of the prevailing surface wind and resulting 
water transport away from the equator in the Ekman layers of the oceans. Therefore, the equator is a 
divergence zone. (b) Corresponding cross section, showing the upwelling and resulting SST anomalies 
which is a consequence of the equatorial divergence [University of Wyoming]. 



Limnology ENV-425   Natacha Tofield-Pasche        
Hydrodynamics of stratified waters 58  Alfred Wüest 
 

 

 
 
 

   
 
Figure 4.6 – (left) Convergence of surface water toward the interior of the North Atlantic Gyre under the 
influence of Ekman transport. Both trade winds (at equator) and westerlies (mid-northern latitude) 
contribute to the accumulation of the warm water pool in the center of the North Atlantic Gyre, creating a 
convergence zone which leads to downwelling. Figure from Apel [1987]. 
(right) Wind-driven general circulation, including subduction as well as upwelling [University of California, 
San Diego].  
 
 
  
d) Global geostrophic flows in oceans 
The small surface elevation indicated in Figure 4.6b is termed setup, and has associated with it a 
hydraulic head and a horizontal pressure gradient, ph∇− , that is opposed by the horizontal com-

ponent of Coriolis force, ( )hu2 
×Ωρ . The currents resulting from this balance of forces are called 

geostrophic flows (earth-turning), and in the absence of time variations and friction, move 
approximately along surfaces of constant elevation. Thus the geostrophic equation is:  
 
(4.4.9)   ( )hh p u2 

×Ωρ−=∇    [N m-3] 
 
where h denotes the horizontal component. Geostrophic balance is not confined to surface 
currents, but may exist at all depths. This equation for balanced flow forms an important tool in 
the analysis of currents in large natural waters. The two horizontal components for the geo-
strophic currents for steady flows (index g refers to geostrophic) read:  
 

(4.4.10)   
x
pfv

∂
∂

=
ρ
1    or 

x
p

f
vg ∂

∂
ρ

=
1  

(4.4.11)   
y
pfu

∂
∂

−=
ρ
1    or 

y
p

f
ug ∂

∂
ρ

−=
1  

(4.4.12)   or in summary: ( )pe
f

u hzg ∇×= 

ρ
1  

 
Geostrophic currents are steady flows in which the horizontal pressure gradients balance Coriolis 
acceleration over long lateral distances (100s to 1000s of km). The vertical pressure gradient is in 
balance with gravity. The flows are perpendicular to the horizontal pressure gradient and parallel 
to the isobars (lines of constant pressure). Thus, in the northern Hemisphere the high pressure 
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region is on the right of the flow. This means that nonlinear acceleration and turbulent friction 
are neglected in comparison to Coriolis force. In particular, if U is the scale for velocity and L for 
length (i.e., distance over which horizontal gradients of the variable occur), we can compare 
advective acceleration L~ 2U  and Coriolis acceleration fU~ . The ratio is known as Rossby 
number: 
 

(4.4.13)   
fL
U

accCoriolis
accnonlinearRo ==

.
.  

 
The geostrophic approximation is valid for small values of the Rossby number, a condition that is 
more common in oceans than in lakes. It is actually a standard approximation in atmospheric 
studies at the synoptic scale (U ~ 10 m s-1, f ~ 10-4 s-1, L ~ 1000 km  Ro ~ 1). 
 
Note: While the horizontal pressure gradients are balanced by Coriolis force, the vertical pressure 
gradient is compensated by the gravitational acceleration in the hydrostatic approximation. 

 

  
 
 
 
Applied to Figure 4.6, this relation implies that at the equator the flow is to the west (from Africa to 
South America; North Equatorial Current), whereas the return flow at mid-latitudes (region of 
westerlies) is directed to the east (North America to Europe; North Atlantic Drift; Figure 4.7). 
The compensating south-north flows are concentrated to the boundary currents – stronger on the 
western side (Eastern USA; China) for secondary hydrodynamic reasons (not discussed here) 
and weaker on the eastern side. The south-to-north flow is the Florida Current / Gulfstream on 
the western side of the basin (Kuroshio Current in the Pacific). The north-to-south flow is the 
Canary Current on the eastern side of the basin (Portugal, Africa) which reaches as far as 
Senegal before it turns west and joins the North Equatorial Current (Figure 4.7). The center of the 
North Atlantic Gyre is an area of high pressure (anticyclones) and the gyre turns clockwise. 
Opposite: cyclones (low pressure area) rotate anticlockwise. Southern Hemisphere: since f < 0, 
the flow direction is reversed (greater pressure to the left).  
 
The geostrophic flows are perpendicular to the horizontal pressure gradient ph∇  and parallel to 
the isobars (lines of constant pressure). Thus, in the northern hemisphere the high pressure 
region is on the right of the flow. This also means that cyclones (area of low pressure) rotate 
anticlockwise and anticyclones (areas of high pressure) rotate clockwise. Vice versa, since f < 0 
in the southern hemisphere, the flow direction is reversed (greater pressure to the left).  
Formally, the geostrophic flow can also be represented by the vector product 

Figure 4.7 
Surface streamlines of an idealized 
subtropical gyre. Intensification of 
flow along the western boundary is 
due to the overall vorticity balance 
of the gyre. Figure from Apel [1987]. 
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(4.4.14)   ( )pe
f

u hzg ∇×
ρ

=  1  

Where ( )1,0,0=ze  is the unit vector in the z-direction. 
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For steady-state conditions ( 0=∂∂=∂∂ tVtU ), they become even simpler: 

(4.5.7)   2

210
z
UfV

x
p

z ∂
∂

++
∂
∂

−= ν
ρ

 

(4.5.8)   2
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ρ

 

and we obtain the so-called Ekman flow. To solve this system of equations we need two 
boundary conditions (e.g. at the surface z = 0 and at the bottom z = -h) for each of the two 
velocity components. 
 
Two dimensionless parameters can be introduced to describe the ratio between the friction term 
and the Coriolis term (definitions with factor of 2 are also used; not relevant): 

 

(4.5.9)   2fLaccCoriolis
frictionhorizontalE h

h
ν

==  horizontal Ekman number 

(4.5.10)   2fHaccCoriolis
frictionverticalE z

z
ν

==  vertical Ekman number. 

 
 
b) Ekman transport at the surface without pressure gradients 
In this section, we chose as symbols for horizontal currents (U, V), simply in order not to confuse 
with the symbol ν, which stand for viscosity (in the equation editor minor v reads as v  which is 
very similar to ν ). For sake of clarity, we first analyse the simplest case, introducing some 
assumptions: the depth is very large so we can assume that the bottom boundary condition is at z 
= -∞; neglect the pressure gradients (that are related to geostrophic flow).  
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Figure 4.17 – Ekman layer at a free surface: (a) the velocity vector at different heights (δ in the figure is 
DE); (b) the velocity profiles [Kundu and Cohen, 2002]. 
 
 
The governing equations are 

(4.5.11)   Vf
z
U

zν
−=

∂
∂

2

2
 

(4.5.12)   Uf
z
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2

2
 

 
with the boundary conditions (for a wind directed northward): 
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∂

=zz
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V

ρν
τ

=
∂
∂

=0
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By differentiation the first equation twice in respect to z and substituting into the second one, a 
fourth-order ordinary differential equation is obtained: 
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An identical equation can be derived for V. Using the boundary conditions, the solution is 
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(4.5.17)   
f

V
zνρ

τ
=0  

is the scale of velocity, and  

(4.5.18)   
f

D z
E

ν
=

2  

is the depth of the so-called Ekman layer. 
  
The flow field described by the solution is a spiral for the velocity vector, which changes direction 
while the velocity is decreasing in downward direction. In fact, the winds at the surface move the 
water on the surface. This movement is transferred to the underlying layers through turbulent 
(eddy) viscosity (friction). However, the Coriolis force tends to deviate the water movement (to the 
right on the northern hemisphere) causing a direction of the velocity at the surface that differs 45° 
from the wind direction. Apparently unexpected, the net water transport integrated over the entire 
depth is orthogonal to the wind. We can see these features analytically observing that the velocity 
at the surface is 

(4.5.19)   00 2
2

4
cos VVU =






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π ,   00 2
2

4
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

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so that the module of the velocity is exactly 0
22 VVUU =+=


. 

 
 
The total transport (per unit length, with the units [m2 s-1]) produced by such a flow can be 
calculated as 

(4.5.20)   
f

DVdzUq E
x ρ

τ
=== ∫ ∞− 2

0
0

 

(4.5.21)   0
0

== ∫ ∞−
dzVqy  
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confirming that, on average, no transport occurs along the direction of the wind, and that a net 
transport exists at 90° (rightward in the northern hemisphere, leftward in the southern). 

 
Figure 4.18 – Balance of forces within the Ekman layer. 
 
It is also possible to rewrite the governing equations as 

(4.5.22)   Vf
z
x   ρτ

−=
∂

∂       
z
U

zx ∂
∂

= νρτ  , 
 

(4.5.23)   Uf
z
y  ρ

τ
=

∂

∂
     

z
V

zy ∂
∂

= ρντ  . 

 
These equations, integrated from the top (where τ

  is equal to the wind stress) to infinity (where 
τ
  goes to zero), provides directly the solution eqs (4.5.19  and 4.5.20). This result is more 
general than the Ekman spiral and suggests that the balance of the forces within the Ekman layer 
is between the wind shear stress and the Coriolis force (Figure 4.18). 
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